Dr. M. Ries

Übungen zu **Numerik (für Geowissenschaftler)** Blatt 2

Ü1 (Vector norms) Sketch the sets

$$B_r = \{ x \in \mathbb{R}^2 | \quad ||x||_r = (|x_1|^r + |x_2|^r)^{\frac{1}{r}} \le 1 \}$$

for

- a) *r* = 2
- b) r = 1
- c) r = 10
- d) $r = \frac{1}{2}$

Ü2 (*Modeling*) Discretize the differential equation $u''(t) = g(t), t \in (0, 1)$, with $u(0) = u^0, u(1) = u^1$, for the parameter $h = \frac{1}{8}$. How does the resulting linear system look like?¹

Ü333 (*Linear equations*) The polynomial $h(t) = at^3 + bt^2 + ct + d$, $t \in R$, should obey the following conditions:

$$h(0) = 1$$

 $h'(0) = 0$
 $h(1) = 0$
 $h'(1) = 0$

What are the coefficients a, b, c and d? Sketch the graph of the solution h.

Ü4 (*Programming, matlab*) The matlab-function hilb(n) returns the *Hilbert-matrix* H with dimensions $n \times n$. Define the (solution-)vector x = ones(n,1), i.e. $x_i = 1, i = 1, ..., n$.

Now, try so solve for this exact solution x, by setting the right hand side b as b := Hx. Use matlab to solve the linear system $H\hat{x} = b$. What ist the difference between x and \hat{x} ?

 $^{{}^{1}}g(t)$, x^{0} , u^{1} are given!